Agelica Angles and Yiliang Li. The Western Qaidam Basin as a Potential Martian Environmental Analogue: An Overview Journal of Geophysical Research, 2017, Journal of Geophysical Research: Planets, 122, 856

Agelica Angles and Yiliang Li. The Western Qaidam Basin as a Potential Martian Environmental Analogue: An Overview Journal of Geophysical Research, 2017, Journal of Geophysical Research: Planets, 122, 856

doi:10.1002/2017JE005293

 

Abstract
The early Martian environment is interpreted as warmer and wetter, before a significant change in its global climatic conditions irreversibly led to the current hyperarid environments. This transition is one of the most intriguing processes of Martian history. The extreme climatic change is preserved in the salt deposits, desiccated landscapes, and geomorphological structures that were shaped by the evaporation of water. However, until a manned journey to Mars is feasible, many Martian materials, morphological structures, and much of its evolutionary history will continue to be poorly understood. In this regard, searching and investigating Martian analogues are still meaningful. To find an Earth environment with a whole set of Martian structures distributed at a scale comparable to Mars is even more important to test landing crafts and provide optimized working parameters for rovers. The western Qaidam Basin in North Tibetan Plateau is such a Martian analogue. The area harbors one of the most extreme hyperarid environments on Earth and contains a series of ancient lakes that evaporated at different evolutionary stages during the rise of the Tibetan Plateau. Large quantities of salts and geomorphological features formed during the transition of warmer‐and‐wet to colder‐and‐dry conditions provide unique references to study the modern Martian surface and interpret the orbital data. We present numerous similarities and results of investigations that suggest the Qaidam Basin as a potential analogue to study modern geomorphic processes on Mars, and suggest that this is an essential site to test future Mars sample return missions.