Quantum Chemical Interpretation of Interstellar Infrared Bands

SeyedAbdolreza Sadjadi June 3rd, 2016

Laboratory for Space Research (LSR) The University of Hong Kong

<u>ssadjadi@hku.hk</u> http://www.scifac.hku.hk/kwok/sal/abdi.html

19th Annual Conference of Physical Society of Hong Kong

What is(are) this(these) Molecule(s)

Astronomical observations

C60: Buckminsterfullerene

Kroto : At last after nearly 100 years the group of John Maier in Basel has made the first breakthrough by assigning two DIBs unequivocally to C_{60}^+ .

Paul von Rague Schelyer et al (PCCP, 14, 14886-14891 (2012)):

- Buckminsterfullerene is spherically π antiaromatic.
- Fullerenes are not highly "stable" molecules.
- Just the opposite is true.
- It is the most strained molecule ever isolated.

Kroto: The main aspect of the discovery was not the fact that C_{60} could be created, but that it self-assembled spontaneously, because this resulted in a reassessment of our perspective on the general dynamic factors which control structure assembly processes at nanoscale dimensions.

This talk is dedicated to the memory of Sir Harold Walter Kroto

Methods of Interpretation

Baumann, K. and J. T. Clerc (1997). "Computer-assisted IR spectra prediction — linked similarity searches for structures and spectra." Analytica Chimica Acta 348(1–3): 327-343.

Visual inspection

Astronomical observations and proposed models

Visual inspection & MAON model

Mixed aliphatic-aromatic organic nanoparticle

calculated geometry of C₁₅₅ H₂₄₀

B3LYP/PC1 (extra care on polarization effects) 3370 basis functions and 1170 electrons

> C1 symmetry 30 CPUs, 3nodes, 20 days Optimization and frequency

Extremely difficult system for optimization

Kwok and Zhang, Nature, 479:80 (2011) Sadjadi, Zhang and Kwok, ApJ, 807:95 (2015 July 1)

Predictions by visual inspection

simulated IR spectra for C₁₅₅ H₂₄₀, DFT/Drude, T=500 K

Sadjadi, Zhang and Kwok, ApJ, 807:95 (2015 July 1)

Accuracy of DFT/Drude simulation

SeyedAbdolreza, S., Z. Yong and K. Sun (2015). "A Theoretical Study on the Vibrational Spectra of Polycyclic Aromatic Hydrocarbon Molecules with Aliphatic Sidegroups." The Astrophysical Journal **801**(1): 34.

Theory of vibrations

Harmonic vibrational frequencies in classical picture

$$T = \frac{1}{2} \sum_{i=1}^{N} m_i \left[\left(\frac{d\Delta x_i}{dt} \right)^2 + \left(\frac{d\Delta y_i}{dt} \right)^2 \left(\frac{d\Delta z_i}{dt} \right)^2 \right]$$

mass-weighted Cartesian

$$q_1=\sqrt{m_1}\Delta x_1$$
 , $q_2=\sqrt{m_1}\Delta y_1$, $q_3=\sqrt{m_1}\Delta z_2$

$$V_0 = 0$$
, $(\frac{dV}{dq_i})_0 = 0$ at equilibrium, $F_{ij} = (\frac{\partial^2 V}{\partial q_i \partial q_j})_0 \rightarrow \ddot{q}_j + \sum_{i=1}^{3N} F_{ij} q_i = 0$

1-Pulay, P. (2014). "Analytical derivatives, forces, force constants, molecular geometries, and related response properties in electronic structure theory." Wiley Interdisciplinary Reviews: Computational Molecular Science **4**(3): 169-181 2-http://tyr0.chem.wsu.edu/~kipeters/Chem537/schedule.html

Theory of vibrations helps to develop a quantitative visual inspection

1945

C_{155} H₂₄₀ (vibrational motion at 19.06 μ m : 32% aromatic, 68% aliphatic)

We try to understand which fragments inside molecules are responsible for the observed IR features. Then we can return back to the observations and track the existences of such fragments and perhaps one step ahead to identify the whole molecule(s)

We separated out the vibrations of different peripheral C-H bonds in the skeleton of PAH molecule

Sadjadi, Zhang and Kwok, ApJ, 807:95 (2015 July 1)

Separation of the vibrations of C-H stretching modes in 3µm region

Spectral similarity

 $X = \{x_1, x_2, \dots, x_i, \dots, x_n\}$ target molecule intensity or wavelengths $Y = \{y_1, y_2, \dots, y_i, \dots, y_n\}$ reference molecule intensity or wavelengths

Properties = f(strcutue)

structure space properties space

 $r_{p} = \frac{\sum_{i} (x_{i} - x) \cdot (y_{i} - y)}{\sqrt{\sum_{i} (x_{i} - \overline{x})^{2} \cdot \sum_{i} (y_{i} - \overline{y})^{2}}}$ Pearson's product moment

correlation coefficient.

 r_p =1 prefect linear correlation or similarity.

For performing similarity we need 1- a pool of reference spectra with same wavelength resolution and normalized intensities with respect to the strongest peak. 2- the unknown spectra should be prepared to match The conditions of reference spectra.

Reliability of similarity methodology

Experimental	Formula	Results
allene	С3Н4	2nd
1-3-butadiene	С4Н6	1st
1-4 pentadiene	С5Н8	1st
acetone	СЗН6О	1st
anthracene	C14H10	1st
styrene	С8Н8	Not found
tetrahydrofuran	C4H8O	1st
acetonitrile	C2H3N	4th
2-ethyl-3-methyl-1-butene	C7H14	Not found
acetylene	C2H2	1st
ethylene	С2Н4	1st
ethane	С2Н6	Not found
1-butyne	С4Н6	Not found
1-pentene	С5Н10	1st
2,4-dimethyl-1,4-pentadiene	C7H12	Not found
acrolein	С3Н4О	1st
Diethyl ether	C4H10O	Dimethyl ether
1-propene	СЗН6	2nd

Target: Experimental IR gas phase (NIST) Reference: EDF/6-31G* data base
Total: 35 tries Successful hit: 13 Reliability : 37%

Astronomical spectra and spectral similarity

Astronomical spectra are recoding in Emission

- They contains very strong atomic emission lines interfere with IR emission bands.
- There is no base line for astronomical IR spectra.

We combined different mathematical techniques in signal/noise processing

- To deal with sharp atomic lines.
- Extracting the true IR features and smoothing the spectrum.
- Non linear baseline corrections.
- Finally convert this astronomical spectrum to a mathematical analogue in laboratory spectrum format.

Astronomical spectra and spectral similarity

Results of our search over a pool of 250,000 molecule by similarity method First results of our mathematical explorations on the chemical composition of the PDS100. elemental composition is predicated as : H, C, N, O, S, Cl, Br

Training tables in neural networks

First steps for training the neural networks

Robb, E. and M. Munk (1990). "A neural network approach to infrared spectrum interpretation." Microchimica Acta 100(3-4): 131-155.

Pictorial conclusion

backward transformation of spectra to its molecular origin

Acknowledgments

Thank you for listing to this talk

I would like to thank my supervisor Professor Sun Kwok and all my colleagues in LSR and HKU Chemistry Department And my special thank to Professor Quentin Andrew Parker for organizing PSHK 2016 at HKU

谢谢

